Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Infect Control Hosp Epidemiol ; 43(6): 764-769, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1890039

RESUMEN

OBJECTIVE: To assess the potential for contamination of personnel, patients, and the environment during use of contaminated N95 respirators and to compare the effectiveness of interventions to reduce contamination. DESIGN: Simulation study of patient care interactions using N95 respirators contaminated with a higher and lower inocula of the benign virus bacteriophage MS2. METHODS: In total, 12 healthcare personnel performed 3 standardized examinations of mannequins including (1) control with suboptimal respirator handling technique, (2) improved technique with glove change after each N95 contact, and (3) control with 1-minute ultraviolet-C light (UV-C) treatment prior to donning. The order of the examinations was randomized within each subject. The frequencies of contamination were compared among groups. Observations and simulations with fluorescent lotion were used to assess routes of transfer leading to contamination. RESULTS: With suboptimal respirator handling technique, bacteriophage MS2 was frequently transferred to the participants, mannequin, and environmental surfaces and fomites. Improved technique resulted in significantly reduced transfer of MS2 in the higher inoculum simulations (P < .01), whereas UV-C treatment reduced transfer in both the higher- and lower-inoculum simulations (P < .01). Observations and simulations with fluorescent lotion demonstrated multiple potential routes of transfer to participants, mannequin, and surfaces, including both direct contact with the contaminated respirator and indirect contact via contaminated gloves. CONCLUSION: Reuse of contaminated N95 respirators can result in contamination of personnel and the environment even when correct technique is used. Decontamination technologies, such as UV-C, could reduce the risk for transmission.


Asunto(s)
COVID-19 , Respiradores N95 , Descontaminación/métodos , Equipo Reutilizado , Fómites , Humanos , Levivirus , SARS-CoV-2
2.
PLoS One ; 16(7): e0241734, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1325370

RESUMEN

Personal protective equipment (PPE) is crucially important to the safety of both patients and medical personnel, particularly in the event of an infectious pandemic. As the incidence of Coronavirus Disease 2019 (COVID-19) increases exponentially in the United States and many parts of the world, healthcare provider demand for these necessities is currently outpacing supply. In the midst of the current pandemic, there has been a concerted effort to identify viable ways to conserve PPE, including decontamination after use. In this study, we outline a procedure by which PPE may be decontaminated using ultraviolet (UV) radiation in biosafety cabinets (BSCs), a common element of many academic, public health, and hospital laboratories. According to the literature, effective decontamination of N95 respirator masks or surgical masks requires UV-C doses of greater than 1 Jcm-2, which was achieved after 4.3 hours per side when placing the N95 at the bottom of the BSCs tested in this study. We then demonstrated complete inactivation of the human coronavirus NL63 on N95 mask material after 15 minutes of UV-C exposure at 61 cm (232 µWcm-2). Our results provide support to healthcare organizations looking for methods to extend their reserves of PPE.


Asunto(s)
COVID-19/prevención & control , Contención de Riesgos Biológicos/métodos , Descontaminación/métodos , Pandemias , SARS-CoV-2/efectos de la radiación , Rayos Ultravioleta , COVID-19/transmisión , COVID-19/virología , Relación Dosis-Respuesta en la Radiación , Equipo Reutilizado , Personal de Salud/educación , Humanos , Laboratorios/organización & administración , Máscaras/virología , Respiradores N95/virología , Radiometría/estadística & datos numéricos , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología
3.
Pathog Immun ; 6(1): 104-115, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1271085

RESUMEN

BACKGROUND: Ultraviolet-C (UV-C) light devices are effective in reducing contamination on N95 filtering facepiece respirators. However, limited information is available on whether UV-C devices meet the Food and Drug Administration's (FDA) microbiological requirements for Emergency Use Authorization (EUA) for respirator bioburden reduction. METHODS: We tested the ability of 2 UV-C light boxes to achieve the 3-log10 microorganism reductions required for EUA for reuse by single users. Whole 3M 1860 or Moldex 1513 respirators were inoculated on the exterior facepiece, interior facepiece, and internal fibers with bacteriophage MS2 and/or 4 strains of bacteria and treated with UV-C cycles of 1 or 20 minutes. Colorimetric indicators were used to assess penetration of UV-C through the respirators. RESULTS: For 1 UV-C box, a 20-minute treatment achieved the required bioburden reduction for Moldex 1513 but not 3M 1860 respirators. For the second UV-C box, a 1-minute treatment achieved the required bioburden reduction in 4 bacterial strains for the Moldex 1513 respirator. Colorimetric indicators demonstrated penetration of UV-C through all layers of the Moldex 1513 respirator but not the 3M 1860 respirator. CONCLUSIONS: Our findings demonstrate that UV-C box technologies can achieve bioburden reductions required by the FDA for EUA for single users but highlight the potential for variable efficacy for different types of respirators.

4.
Am J Infect Control ; 49(4): 424-429, 2021 04.
Artículo en Inglés | MEDLINE | ID: covidwho-917197

RESUMEN

BACKGROUND: Filtering facepiece respirators (FFR) are critical for protecting essential personnel and limiting the spread of disease. Due to the current COVID-19 pandemic, FFR supplies are dwindling in many health systems, necessitating re-use of potentially contaminated FFR. Multiple decontamination solutions have been developed to meet this pressing need, including systems designed for bulk decontamination of FFR using vaporous hydrogen peroxide or ultraviolet-C (UV-C) radiation. However, the large scale on which these devices operate may not be logistically practical for small or rural health care settings or for ad hoc use at points-of-care. METHODS: Here, we present the Synchronous UV Decontamination System, a novel device for rapidly deployable, point-of-care decontamination using UV-C germicidal irradiation. We designed a compact, easy-to-use device capable of delivering over 2 J cm2 of UV-C radiation in one minute. RESULTS: We experimentally tested Synchronous UV Decontamination System' microbicidal capacity and found that it eliminates near all virus from the surface of tested FFRs, with less efficacy against pathogens embedded in the inner layers of the masks. CONCLUSIONS: This short decontamination time should enable care-providers to incorporate decontamination of FFR into a normal donning and doffing routine following patient encounters.


Asunto(s)
COVID-19/prevención & control , Descontaminación/instrumentación , Sistemas de Atención de Punto , Dispositivos de Protección Respiratoria/virología , SARS-CoV-2 , Rayos Ultravioleta , COVID-19/virología , Descontaminación/métodos , Equipo Reutilizado , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA